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STATION KEEPING OF HIGH POWER COMMUNICATION SATELLITES
by Robert R. Lovell and Thomas A. O'Malley

Lewis Research Center

SUMMARY

Station-keeping requirements were determined for a class of high-power synchro-
nous equatorial communication satellites characterized by large, Sun-oriented solar
arrays. The unkept satsllite orbit was determined when the combined perturbing forces
of the Sun, Moon, solar radiation pressure (including Earth shadow effects), radio-
frequency radiation pressure (frcm {ransmitting antennas), and Earih's oblateness and

. triaxiality were acting on the satellite. The effects of radio-frequency radiation pres-
sure and the Earth's oblateness and shadow are negligible, The remaining forces cause
three appreciable and separable perturbations in the satellite orbit.

The Sun and Moon cause a nearly linear (over a 5-year period) increase in the
inclination of the orbit at a rate of 0.85° per year. Orbit inclination causes the
satellite to undergo an apparent daily north-south nscillation with maximum latitude
equal to the inclination. For minimum propellant .onsumption, station correction is best
effected by applying two thrust pulses (12 hr apart) with the center of the pulses occurr-
ing at the intersections of the desired orbit plane and the actual orbit plane. The veloc-
ity increment (AV) per year requirement for impulsive thrusting is approximately

.46 meters per second.

The Earth's triaxial mass distribution causes a long period, large amplitude oscil-
lation in the satellite longitude position., The AV per year requirement for impuisive
thrusting is less than 1. 75 meters per second.

Solar radiation pressure changes the eccentricity of the orbit. An eccentric orbit
causes the satellite to have an apparent daily east-west oscillation with maximum am-
plitude in radians equal to twice the eccentricity, For minimum propellant consumption
staticn correction for eccentricity is best effected by applying two thrust pulses 12 hours
. "apart. These thrust pulses control the line of apsides such that the projection of the

"Earth-Sun line into the orbit plane is coincident with the Earth-perigee line, The AV
requirement is proportional to the area-to-mass ratio of the satellite. For an area-to-
mass ratio of 0.15 square meters per kilogram, an average satellite reflectivity of
0.3, and an allowable longitude error of 0. 15°, the AV per year requirement for im-
pulsive thrusting is 8 meters per second.
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INTRODUCTION

The next generation of communication satellites will use large, lightweight, Sun-
oriented solar arrays as a primary power source, The satellites will transmit narrcw
radio-frequency beams from synchronous equatorial orbit to high gain receiver antennas
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on the ground. The system engineer must make a trade-off between the gain and pointingg

requirements of the ground receiver antenna and the station-keeping accuracy of the
satellite. This is particularly true for missions using frequencies around 12 gigahertz.
For example, at 12 gigahertz, with effective receiving apertures as small as 4 square
feet (0.37 m®), ground receiver antennas will have a half power beam width of 2 20

cause of antenna mounting uncertainties, it may be mispointed by 1/ 29, If the satellite
drifts off station by an additional 1/ , then the received s1gnal strength will be reduced
by a factor of two. If the satellite pr1me power is fixed, either the ground antenna pomt
ing accuracy must be improved or the satellite station- keepmg accuracy must be in-
creased,

The problem of satellite station keeping is not new. The yearly AV requirements
of 46 meters per second for north-south and 2 meters per second for east-west station
keeping are documented in a number of reports. The 46-meter-per-second AV re-
quirement for north-south or inclination control is based on impulsive corrections re-
quired to counter the perturbing accelerations of the Sun and Moon. The 2-meter-per-
second AV requirement for east-west or longitude control is based on impulsive cor-
rections required to counter accelerations arising from the Earth triaxial mass distri-
bution. For relatively dense, rigid satellites, station-keeping requirements can be
specified by considering only the previously mentioned effects. But for high-power
communication satellites (HPCS's), this is not enough,

HPCS8's have two characteristics that complicate the problem of determining
station-keeping requirements. The first of these characteristics is the reflective prop-
erties of large Sun-tracking solar arrays. Solar pressure causes an acceleration pro-
portional to the v ea-to-mass ratio of the satellite, and the resultant accelerations
change the eccentricity of the satellite orbit. As a result of the large Sun-tracking solar
array, the area-to-mass ratio is sufficiently high that the station-keeping requirements
due to solar pressure must be considered.

Second, HPCS's behave as flexible bodies. Large roll-out solor arrays are very
flexible and can tolerate only mild accelerations without structural failure. Impulsive
accelerations resulting from station corrections initiate solar array panel oscillations
that interact unfavorably with the fine pointing attitude control system. As a result of
the flexible structure characteristics, the station-keeping impulses must be distributed
over a longer period of time,
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This report presents the results of an analytical study of the requiremenis reces-
sary to keep a class of 24-hour synchronous equatorial communication satellites on
station. The class of satellites considered can be described as Sun-tracking flat plates
with area-to-mass ratios varying from 0. 05 to 0. 15 square meters per kilogram. This
includes the HPCS series of satellites, which have a dense central body, some relatively
small reflector antennas, and large Sun-oriented solar arrays.

The reader is presented with working curves and equations that show the relations
between spacecraft parameters, station accurzcy, and thruster and propellant require-
ments. The approach taken is to present the reader with a review of the unkept (or what
happens if one does nothing) satellite station when the satellite is subjected to varicus
perturbing forces. The unkept station is described in terms of the classic orbital ele-
ments, The perturbing forces considered are the Sun, Moon, solar pressure including
the Earth's shadow, Earth's cblateness and triaxiality, and radio-frequency radiation
pressure,

After establishing the unkept station, fundamental concepts of correcting the per-
turbed orbital elements are examined. Radial, tangential, and out-of-plane thrust
schemes are examined to determine their applicability to controlling the orbital ele-
ments. Satellite accelerations and characteristic velocity requirements and hence
thruster size and prupellant weights are given for various r 2thods of station keeping.
Finally, a sample problem is presented to demonstrate the use of the design curves for
a typical HPCS mission.
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SYMBOLS

Symbols used for special purposes are defined where they occur in the report and
are not included in the following list,

A/m area-to-mass ratio of satellite, mz/kg

a semimajor axis

ans thruster acceleration, north-south station keeping

agi thr";z:ter acceleration, east-west station keeping due to solar pressure for the
i method

e eccentricity

e* maximum allowable eccentricity

ep peak eccentricity that would occur if initial orbit were circular (eo = 0) and no

station keeping were applied
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inclination

(A/m)(1 + o)

allowable longitude error

allowable longitude error due to solar pressure effects

allowable longitude error due to triaxiality effects

number of days to complete a station-keeping correction of a specified type

number of days between the beginnings of successive station-keeping correc-
tions ot a specified type

unit vector from center of Earth to orbit perigee

unit vector formed by projecting P into equatorial plane

duty cycle, equal to thruster on-time per orbit divided by orbit period
unit vector orthogonal to P such that P and @ lie in orbit plane
radial distance of the satellite from the center of the Earth
variation of r from the nominal synchronous radial distance
variation of r due te solar pressure effects

variation of r due to triaxiality effects

solar constant, 4. 5x10~8 kg/(m)(secz)

station keeping

unit vector from center of Earth to San

unit vector formed by projecting U into equatorial plane

nominal satellite velocity, 3075 m/sec

velocity increment needed to make a station-keeping correction
velocity increment per year for north-south station keeping

velocity increment per year for east-west station keeping (due to solar pres-
sure) when using the ith method

velocity increment per year for east-west station keeping (due to triaxiality)
inertial coordinate system

eccentricity ratio e*/ €

longitude of satellite measured from minor axis of Earth's equatorial section

desired value of ¥




p value of y at the perigee of orbit just prior to an east-west correction

Ay variation of y from Yo where vy = Yo * Ay

Ayp variation of y from -yp where v = Yp T Ayp

Ays varition of y caused by solar pressure effects

Ayy variation of v caused by triaxiality effects

p\ longitude of Sun measured from X-axis

A mean angular velocity of Earth's orbit about the Sun A= 1. 9910”7 rad/sec
éE angular velocity of Earth's rotation about its axis éE =1, 29x10'5 rad/sec
U gravitational constant of Earth

g average reflectivity of satellite

latitude of satellite

angle through which apsidal line is rotated

e € =S

longitude of perigee measured from X-axis

SATELLITE AND TS ORBIT

Figure 1 shows three typical satellites of the type ccnsidered in this report. These
satellites have a dense central body, some relatively small reflector antennas, and
large Sun-oriented solar arrays. They can be characterized as Sun-tracking flat plates
with area-to- mass ratios varying from 0,05 to 0. 15 square meter per kilogram.

To facilitate continuous Earth coverage to nonsteerable ground antennas, these sat-
ellites will operate from synchrorzas altitude. Satellite position control to within 0, 2°
in latitude and longitude may be required. Typical missions will last for 5 years.

NATURAL PERTURBATIONS AND UNKEPT STATION

Because of the effect of various perturbing forces, a satellite in synchronous equa-
torial orbit will not remain stationary with respect to the rotating Earth, Perturbing
forces considered in this report arise from the oblateness and triaxiality ot the Earth,
the Sun and Moon gravitational attraction, and solar radiation pressure. Perturbation
forces arising from radio-frequency radiation pressure from communication antennas
are neglected because they were found in appendix A to have negligible effect on the sat-
ellite orbit.




Before the methods and requirements of station keeping are analyzed, the resultant
behavior of the unkept (no station keeping) satellite station will be determined.

The position of a satellite with respect to the rotating Earth can be completely de-
termined by three parameters: r, distance from center of Earth to satellite; y, satel-
lite longitude measured from the minor axis of the Earth's equatoria’ section; and ¢,
satellite latitude. Letting r, be the nominal value of r for a 24-hot.: circular orbit
and vy o be the initial value of y, the variations Ar and Ay can be defined by the
equations

r=r, +Ar (1)

Y=y, + AY ()

The deviations of a satellite from a nominally synchronous equatorial or? .t are given by
Ar, Ay, and ¢@. An out-of-plane perturbation creates a nonzero orbit iuclination which
in turn causes nonzero values of ¢. An in-plane perturbation causes changes in orbital
period, eccentricity and orientatior of the apsidal line which in turn causes changes in
Ar and Ay,

Qut-of-Plane Perturbations (Changes in @)

From reference 1, the effect of the Sun and Moon is to cause the orbit inclination to
build sinusoidally to a peak of 14, 70 atter 26% years and then decrease to zero after
53 years. Over the first 5 years, the inclination increases at an approximately linear
rate of 0, 85 degree per year. The satellite latitude undergoes a sinusoidal oscillatic.
once per orbit with amplitude in radians equal to the instantaneous orbit inclination,
Figure 2 shows a plot of latitude as a function of time. The «ffect of the Sun and Moon
is the only significant out-of-plane perturbation.

In-Plane Perturbations (Changes in Ar and Ay)

The Earth's oblateness and triaxi ality, the Sun and Moon, and solar radiation pres-
sure cause in-plane perturbations. The effect of oblateness is to modify the value of r,
from that obtained from a spherical Earth model. The effect of the Sun and Moon is to
cause small oscillations in both Ar and Ay. (From ref, 2, a conservative upper bound is
3000 meters for Ar and 0.06° for Ay.) The effect of triaxiality i3 to cause a longitu-
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dinal oscillation about the Earth's mionr axis. The effect of sclar pressure is to change
tg
solar pressure are importantad are analyzed below

Triaxiality. - From reference 3 the E;arth's equatorial cross section is approxi-
mately an ellipse with an ellipticity of (élJf‘,z)i, where ng) has the value of -1. 816><10'6.
The minor axis of the equatorial ellipse p;sses through 74. 6° east long itude and 105. 4°
west longitude (see ref. 3). These two longitudes are stable points. Neglecting other per-
turbations, a satellite piaced at either of these longitudes ('yo = 0) will tend to stay there.
Hence, if a satellite is positioned at any other longitude (y o * 0), it will undergo a longi-
tudinal oscillation about the nearest minor axis (see ref. 4). The period of this oscillation
is greater than 2.2 years and is a function of Yo The variation of r also undergoes an
oscillation of the same period. The amplitude of this oscillation is a function of ¥ o
When v, is 90°, the amplitude of thc Ar oscillation is a maximum (35 000 m). The
variation of r and y due to triaxiality will be denoted by Art and A'yt. Figure 3
presents ‘r, asa function of time with Yo = 459, Figure 4 presents Ay, asa function
of time with y, = 45°,

Solar pressure. - The effect of solar pressure is to change the orbit eccentricity
and or.entation of the apsidal line. It has a negligible effect on the - rbit period. The
induced eccentricity causes a daily longitudinal osci.lation with amplitude 2e radians.
The period of this longitudinai nscillation (24 hr) is much smaller than the period of
longitudinal oscillation due to triaxiality. Solar pressure also causes a daily oscillation
in orbit radius with amplitude er o "nlike the other perturbaticns, the effect of solar
oressure is dependent on sateliite parameters, With the assumptions that the satellite
is a flat plate whose surface is perpendicular to the Earth-Sun line and that the front side
thermal radiation is the same as the back side thermal radiation, the perturbing accel-
eration of the saiellite due to solar pressure is

a = -SkU (3

where U is a unit vector from the center of the Earth to the Sun, S is the solar con-
stant at 1 AU, and

k=(1+0)A (4)
m

or approximately 1.3 times the area-to-mass ratio for silicon cell solar arrays (as-
summing average satellite reflectivity ¢ = 0.3).

There is no solar pressure when the satellite is in the Earth's shadow. For 275 days
of the year, the satellite does not enter shadow at all, Over a l-year period, the satel-
lite is in shadow 1 percent of the time. The satellite is in shadow no more than 5 per-
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cent of the orbit even for the worst cace (at the vernal and autumnal equinoxes), 'The
inclusion of Earth shadow in computer solutions indi.ated that the effect of shadow is
negligible., The effect of shadow is ignored in the following analysis.

Before continuing with the discussion of solar radiation pressure, refer to figure j
for definitions of the quantities I_J, ﬁlﬁ f’, _f’l’ A, and w. The XYZ reference coo.di-
nate system is an inertial system with the origin at the center of the Earth. The X-axis
is toward thr autumnal equinox, the X-VY plane is the equatorial plane, and the Z-axis is
alony uie Earth's spin axis. Notice that w is not the argument of perigee, put rather
the longitade of perigee measured from the X-axis. When the initial orbit is circular, e
as a function of time is given to a good degree of agproximation by

1

e(t)=e lsin = itl 5)
Pl 2
where ep is given by
e =3K_ 9,022k 6)
Pvi

where k is in square maters per kilogram, V is the nominal satellite velocity, and A
is the mean angular velocity of the Earth's orbit about the Sun (27 + 4/yr)., Longitude of
perigee w(t) in radians is given approximately by

w(t) = 2 +£+lit; 0<t=<1year )]
°© 2 2

Equation (7 implies that the line of apsides rotates uniformly in inertial space, making
a 180° rotation in a 1-year period. Equations (5) to (7) ae derived analytically in ap-
pendix B with the assumption that the ecliptic plane, equatorial plane, and orbit plane
are the same plane. Solutions for e{t) and w(t), without the coplanar assumption, were
obtained on a digital computer by using numerical i~tegration. The computer sclutions
agreed well with analytic solutions, Figure 6 presents the computer solutions for
e(t)/k for two cases. In the first case (starting at the vornal equinox), the maximum
eccertricity is slightly less than for the second case (starting at the winter solstice)
When starting at any other time of the year, the maximum eccentricity will be some-
where between the two maximums shown in figure 6. Figure 7 presents w(t) and A(t)
when starting at the vernal equinux., The apparent discontinuity in w(t) at time equal
to i year is resolved by realizing that the line of apsides is undefined when the eccen-
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tricity is zero. The relation of « to A plays an important role in choosiag station-
keeping techniques.

Appendix C gives a detailed discussion of the resulting orbit when the initial orbit is
noncircular. However, one special case deserves attention heve, If e, = —12 ep and
W, = A, then e(t) and w(t) are given to a good degree of appro—~imation by

e(t) = ep (8)

R

w(t) = 2 + At = At) (9)

Thus, the eccentricity remains constant, and the line of apsides rotates uniformly in
syncnronization with the Earth-Sun line. Equation (9) implies that the orbit perigee is
Sun-oriented. The analytic derivation of equations (8) and (9), using the coplanar as-

~ sumption, is included in appendix B. A 24-hour orbit having an eccentricity and longi-

tude of perigee as given by equations (8) ard (9) will be called a Sun-oriented orbit. The
importance of the Sun-oriented orbit is that its eccentricity remains constant at a value
of only half the maximum eccentricity obtained from an initially circular orbit. The
Sun-oriented orbit is analogous to a Sun-synchronous orbit. In a Sun-synchronous orbit,
a proper combination of orbital radius and inclination will cause the line of rodes to
rotate with an antular velocity of 360° per year. In the Sun-oriented orbit, the proper
combination of eccentricity and initial longitude of perigee causes the line of apsides to
rotate with an angular velocity of 360° per year. Figure 8 presents plots of eft)/k ob-
tained from computer solutions using numerical integration. Figure o presents «(t) and

~At). The compater solutions did not use the coplanar assumption. Both figures show

’ ; close agreement to equations (8) and (9).

Summary of Perturbations

Three significant and distinct orbital motions result from the perturbation fnrces

" acting on a synchronous equatorial communication satellite. They are summarized as

ER I

. follows:

(1) The Sun and Moon cause the orbit to develop an inclination at the rate of 0. 85°
per year. The induced inclination causes the satellite latitude to undergo a daily sinus-
oidal oscillation with amplitude equal to the instantanecus inclination.

(2) The Earth's equatorial section is approximately an ellipse with minor axes at 75°
east and 105° west longitude. A satellite positioned at any other longitude will tend to
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drift toward and oscillate about the nearest minor axis. The period of this oscillation is
greater than 2.2 years and is a function of the initial longitude.

(3) Solar pressure changes the orbit eccentricity and longitude of perigee. The in-
duced eccentricity causes the satellite longitude to undergo a daily longitudinal oscilla-
tion with araplitude 2e radians. The perturbing acceleration of the sateliite due to
solar pressure is proportional to the area-to-mass ratio.

STATION KEEPING METHODS AND REQUIREMENTS

In the previous sections, the orbit perturbations were presented in terms of Ar,
Ay and ¢@. Changes in Ar, Ay or ¢ will cause changes in one or more of the cvbital
elements a, e, i, and w. Table I presents a summary of the perturbations, their ef-
fects on the orbital elements, their effects on Ar, Ay, ¢, and sorae comments.

TABLE I. - SUMMARY OF PERTURBATIONS

Perturbation Effect on the Effect on Ar, Coraments
orbital elements Ay, @
a, e, i, w
Sun and Moon |i=(0.86%yr)t | =isin éEt Station geeping needed co
Small oscillations | Small oscillations { controi i
in a in Ar, Ay No station keeping nceded
to control a
Oblateness  [-=-=w--mcmcmcomclocmummncanne- Oblateness modifies r,
Nc station keeping needed
a3 long as orbit is nomi-
nally equa‘orial
Triaxiality Long-period Long-period Station keeping needed to
oscillation oscillation in control a
in a Ar, and Ay, -

Solar radiation|If e_ =0,

o Short-period
pressure then

oscillation in
sin l itl Ars’ A"'s
2

Station keeping may be
needed to control e

e=e and/or w
P
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In discussing station-keeping methods and their associated requirements, it is con-
venient to use equations that give the time rate of change of orbital parameters as a
function of the station-keeping acceleration. Integrating these equations over the time
interval of thrusting wili yield the change in the orbital parameters. The station-keeping
acceleration vector can be 1esolved into a component R along the radius vector (meas-
ured positive away from the Earth), a transverse component T in the instantaneous
orbital plane (measured positive when in the same direction as the orbital velocity vec-
tor), and a component W norinal to the instantaneous orbital plane (measured positive
to the north). From reference 5, the equations for the time rate of change of the orbital
elements are

da_ 2e sin 0 221]’1-92
4. R + T (10)
dt n]/l - e2 nr

$=V1-ezsmoR+21-e2 afn-e% | 1)
t na

naze r
’/ 2 y 2
do__¥Y1-e"cosfp V1l-e (1+—-—-1———)(sin 6)T (12)
dt nae nae 1+ecos 6
di_ rcos ¢ w (13)

dt na2‘/1 - e2

where n is the orbital angular velocity, r is the orbital radius, 6 is the true anomaly,
and ¢ is the angle from the ascending node to the instantaneous position of the satellite,
Retaining only first-order perturbations in e and assuming e cos 8 << 2, ejuations
(10) to (13) can be reduced to

da_2aesinfp , 2aq (14)
dt v \'A
_d_e=sin9R+2coseT (15)
dt A" Vv
ggz-cosGR_*ZsinGT (16)
dt eV eV
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In all of the siation-keeping methods to be described, there are two thrusting
periods per orbit of 12 p hours each where p is the thruster on-time per orbit divided
by the orbit period (24 hr). The first thrusting period is centered about a position in the
orbit to be called Al‘ The second thrusting period is centered about A2. In all cases,
A2 is separated from A1 by an angular distance of 180°. Each station-keeping correc-
tion is assumed to take place over M consecutive orbits. Thus one station-keeping
correction consists of 2M thrusting periods and a total thrusting time of Mp days.

In the following sections, the station-keeping requirements are given in terms of
the AV per year and the thruster acceleration.

North-South Station-Keeping Methods and Requirements
Due to the Sun and Moon

In the previous sections, it was shown that the Sun and the Mocn cause the orbit to
develop an inclination. To control the effects of the Sun and the Moon, one must control
the inclination of the orbit. To change the orbit inclination an amount Ai, it is neces-
sary to thrust normal to the orbital plane. Figure 10 presents a sketch of this maneuver
for M =1 and for a duty cycle close to zero (impulsive thrusting). The correction is
made by thrusting in the south direction in the vicinity of A1 and thrusting in the north
direction in the vicinity of A2 where A1 and A2 are the ascending and desending nodes,
respectively. The change in inclinaticn Ai as a function of duty cycle p can be found by
integrating equation (17).

np/ZéE .
cos(oEt)

Ai=2M — 2wt (18)

-np/2éE v

The result is
2 AV, sin BT
Ai = —2 (19)
Ypn

12




Solving for AVc gives

AV, =V A pT___ (20)

2 sin 27
2

Let ays be the north-south acceleration caused by the station-keeping thruster.
Then ang = W and the change in inclination for a complete corrvection (firing near
each node for M consecutive orbits) is given by

4M
NS g BT (21)

Al

Recalling that the Sun and Moon cause i to increase at the rate 0,85 dogree per year, Al
can be expressed in radians as

Al = —— — (22)

where N equals the number of days between the beginnings of successive inclination
corrections. Equations (21) and (22) can be combined to yield

a2\ (2. 3x1076) M (23)
sec2

sin BL
Using equation (20), the AV per year (AVNS) is given by

AV o )4 RT_ (24)
sec 2 sin 22
2

The AVNS is plotted as a fuaction of p in figure 11, In figure 12, MaNS is plotted as
a function of p for N =1, 7, and 60.

«
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East-West Station-Keeping Methods and Requirements Due to Triaxiality

Triaxiality causes a long period east-west or longitude oscillation. Accompanying
the longitudinal drift is a change Aa in the semimajor axis. The method used to control
against triaxiality is based on changing the semimajor axis.

The semimajor axis of the orbit can be increased by some small amount (Aa > 0) by
thrusting eastward in the vicinity of both A1 and AZ' Position A1 can be either the
apogee or the perigee of the orbit. If Aa is negative, then the direction of the thrust is
westward., Figure 13 presents a sketch of this maneuver for impulsive thrusting when
Aa is negative, For impulsive thrusting, equation (14) can be integrated to yield

Az =22 ay (25)
v c
Solving for AV c gives
av =Y aa (26)
2a
For nonimpulsive thrusting,
av, =Y o[ PT__ 27)
22 |9 gin BT
2

Figure 14 presents a plot of Aa against Ay The dashed portion of the curve
represents the motion when station keeping is not used. When station keeping is used,
the satellite will be initially positioned so that Ayt = -ALt, where ALt is the maximum
allowable excursion due to triaxiality. The initial semimajor axis will be a +. (see
point A, fig. 14). The satellite will drift eastward until A-yt = +ALt (point B, fig. 14),
and then begin drifting westward. When the satellite has drifted to a point where
Ayt = -ALt (point C, fig. 14), the semimajor axis will be a, - Aac. Station keeping is
then used to increase the semimajor axis an amount ZAac, bringing the satellite back to
point A again. The process is then repeated. The station-keeping acceleration level is
small enough so that the corrections can be done impulsively. The AV per year (AVt)
for correcting triaxiality is then only a function of the off-longitude v o {cee ref, 4).

14

A Ehas -3 D+ T Nt




K -szq_ e

PEPE S RARN ot P e g e

" g

i

T Al R cnli e R el

Avt(_‘P_) = 1.75|sin 2'yol (28)
secC

Figure 15 presents a plot of AVt as a function of Yo

East-West Station-Keeping Methods and Requirements Due to Solar Pressure

In the previous sections, it was shown that solar pressure changes the eccentricity
and rotates the line of apsides of the orbit. It will be shown in this section that the ef-
fects of solar pressure can be controlled by continuously thrusting directly against the
Sun, or by controlling the eccentricity, or by controlling the line of apsides. Four
methods are presented. Appendix D presents station-keeping techniques for changing
orbital eccentricity and rotating the line of apsides. Derivations of the formulas for AV
and acceleration requirements for each methed are presented in appendix E,

Method 1. - In this method the effect of solar pressure is canceled by continuously
thrusting toward the Sun. The acceleration of the satellite due to the thrust is equal but
opposite to the acceleration caused by solar pressure. The AV per year is

av,, = 38kn 3 (29)
2x \3
The acceleration level is

Method 2. - In this method each time the eccentricity becomes equal to a predeter-
mined maximum allowable eccentricity e* the orbit is circularized. Appendix C shows
that an eccentric orbit can be circularized by thrusting either collinearly with the orbit
velocity vector or collinearly with the orbit 1 dius vector. Appendix C also shows that
tangential thrusting requires only one-half as much AV as radial thrusting. For that
reason, the requirements for this method are given for tangential thrusting only. Let
AL, denote the maximum allowable longitude excursion due to solar pressure consist-
ent with the station accuracy requirement. Since eccentricity causes a dai’y longitude
oscillation of amplitude 2e radians, e* = 1 ALS (where ALS is in radians). The param-
eter S is defined as the ratio of the maximum allowable eccentricity to the maximum
eccentricity that would result from an initially circular orbit (assuming no station keep-

ing), that is,
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Clearly, if B > 1, no station keeping is required. If ALs is in degrees and k is in

mz/kg, B can be expressed as a simple function of AL and k.

AL
B=0.4—5
Kk

Figure 16 presents a plot of e/ep, w, and X as functions of time when method 2 is
used. The AV per year is

AV o= 3Skw p7 B )
s2 : 13

2 sin 2" \gin~
2

The acceleration level is

6
as4=€r__'_E> B
M/\ 82 sin 27
2

(32)

(33)

(34)

Figure 17 presents a plot of AVsz/k as a function of p with £ as a family parameter,

_Figure 18 presents the corresponding plot for (M/k)asz.

Methed 3. - In method 3, the line of apsides is rotated each time the eccentricity
becomes =qual to the maximum allowable eccentricity e*. The line of apsides is rotated
in such a manner that the solar pressure will cause the eccentricity to decrease to zero

before increasing again. Figure 19 gives curves of e/e , w, and A when station

keeping is not used. As seen from figure 19 the eccentricity is increasing when the

apsidal line leads the Karth-Sun line (w - A > 0). The eccentricity is decreasing when
the apsidal line lags the Earth-Sun line (w - A < 0). For method 3, the apsidal line is
rotated so that » - A changes from the lead angle wy = Aq to the lag angle wg - Ag.

If the apsidal line is rotated through an angle Aw = 2(:...»1 - )\1), at times t, and 3t "

then e/ep, w, and )\ curves as given in figure 20 are obtained. Appendix C shows that
tangential thrusting requires only one-half as much AV to rotate the line of apsides as
radial thrusting, For that reason, the requirements for this method are given for tan-
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gential thrusting only. The AV per year for method 3 is

_ 3skr [/ ot <B 1-32> (35)

2 \2 sin 2T sin”1p

AVSS

Notice that

‘/ 2

The acceleration level is

M \ 4%

ag3 =‘SE<39F> ﬁi/ 1- (36)

Figure 21 presents a plot of AVS3/k as a function of p with 8 as a family parameter.
Figure 22 presents the corresponding plot for (M/k)as3.

Method 4. - In method 4, the orientation of the apsidal line with respect to the
Earth-Sun line is controlled such that the eccentricity is maintained at or slightly below

~ the maximum allowatle eccentricity e*. Figure 23 presents plots of e/e , w, and A
when method 4 is used. Initially the eccentricity is e*, and the apsidal line lags the

Earth-Sun line by a small amount (w - A slightly iess than 0). Due to the lag, eccen-
tricity will decrease slightty, When the apsidal line coincides with the Earth-Sun line

" (w = 1), the eccentricity reaches a minimum. When the apsidal line leads the Earth-Sun

' line (w - X > 0), eccentricity increases and eventually becomes equal to e* again. At

this time, the apsidal line is rotated so that w - A has the same lag value it had at time

" equal to zero, The process is then repeated. Each time the eccentricity becomes equal

- to e*, the apsidal line is rotated through the same angle Aw,

For very frequent corrections, the angle Aw is very small, As a result, w &~ )
and e ~ e*, Frequent corrections are desirable because the AV per year decreases

« " as the frequency of correction increases.

The requirements for this method are given for tangential thrusting only. The AV
per year for frequent corrections is

17
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AV 4 = (3Sk’> PT_ \1 - 28) (37)
2x 2 sin 22-1[

If corrections are made every N days, then the acceleration level is

_Sk(3N\[1 - 28
54" M< 4 ) . pm 38)
sin £—

Figure 24 presents a plot of AVs 4/k as a function of p with B as a family parameter.
Figures 25(a) and (b) present the corresponding plot for (M/k)as 4 With N=7 and N = 30.

Comparison of methods. - To explicitly compare the different inethods of controlling
eccentricity, figure 26 plots AV /k (for i =2, 3, and 4) as a function of B with a duty
cycle of 0.01, When B is 0, AV /k is 106 kilograms per meter per second (m/sec)/

(m /kg) for methods 2 to 4. Equatmn (29) shows that AV 1/k is independent of B and
has a value of 142 kilograms per meter per second.

Several factors must be considered in choosing one of these methods of controlling
eccentricity. If a cold gas system 1s used for station keeping, it is desirable to choose
a method having a small AV per year. I B is large, method 4 requires significantly
less AV per year (see fig.. 26). However, this method requires more complex or more
frequent staiion-keeping maneuvers than methods 2 or 3. ¥ B is close to 0, then the
AV per year is nearly the same for methods 2 to 4. In this case, method 2 might be
chosen because it is the simplest, If a low-thrust, high-specific-impulse system is
used for station keeping, then it is not so critical to minimize the AV per year. In this
case, either method 1 or 2 may be best.

Interactions Between Station-Keeping Methods
To this point, the station-keeping requirements for correcting effects due to solar
pressure and triaxiality have been discussed separately. Since longitude excursions
are due to both solar pressure and triaxiality, two allowable longitude excursions ALs
and AI.,t can be specified in such a way that

ALg + AL, = AL (39)
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where AL is the maximum allowable longitude excursion due to both solar pressure
and triaxiality. How AL s and ALt are chosen depends on the methods of eccentricity
control and triaxiality control to be used. Method 1 for controlling eccentricity is a
special case because the eccentricity is always zero. ALS is not an applicable param-
eter. Therefore, ALt may be set equal to any number less than or equal to AL. When
using method 2, 3, or 4, the veolicity increment Avsi’ for i=2, 3, or 4, is dependent
on ALs through the parameter B. For each of these three methods, Avsi becomes
smaller as ALS becomes larger. On the other hand, AVt is independent of ALt. A
general rule can thus be stated that AV requircments are minimized by choosing AL s
only slightly smaller than AL.

To demonstrate the interaction of station keeping for triaxiality and station keepinrg
for solar pressure, assume that method 2 we 5 chosen for zontrolling eccentricity.
The spacecraft is assumed to have an area-to-mass ratio of 0.15 square meter per
kilogram and a reflectivity of 0.3, so that k = 0,195 square meter per kilogram,
Choose y to be 45°. For AL = 0.30°, choose AL = 0.26° and AL, = 0.04°. With
these assumed parameters, triaxiality corrections would be made every 20 days, and
eccentricity corrections would be made every 65 days. Figure 27 presents a plot of
Ay, asa function of time when radial thrust is used for eccentricity control. The solid
line represents Ay, In any one orbit, Ay (in deg) is given approximately by

By = Ayy + Byg = Ay, + 2(57. 3e)sin Gyt (40)

where e is the instantaneous eccentricity of the orbit. Thus, Ay oscillates between
Ay, - 2(57. 3e)and Ay + 2(57.3e). The dashed lines in figure 27 represent Ay, + 2(517. 3e)
and Ay, - 2(57.3¢). For example, on the 50" orbit (t = 50 in fig. 27), & oscillates
between -0.16° and +0. 24°.

Tangential thrust for eccentricity control is more desirable than radial thrust be~
cause only half as much AV is required (see egs, (D2) and (D5)). However, unlike the
radial-thrust case, tangential thrust for circularizing the orbit causes a change of
3ne/4 radians in Ay, (see appendix D). Figure 28 presents a plot of Ay, as a function of
time when tangential thrust is used. At t= 62, the first orbit circularization is made,
causing an increase of 0. 31° in ay,. The triaxiality effect is used to advantage here
because it causes Ayt to decrease steadily until A'yt = -0,04° on the 82nd orbit, at
which time the triaxiality correction is made. it should be pointed out that figures 27
and 28 are idealized curves used only to give a feel for how triaxiality, solar pressure,
and east-west station keeping affect Ay. In an actual situation, other factors must be
considered which might alter these curves. In particular, one must consider the effect
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TABLE II.

- STATION-KEEPING METHONDS AND REQUIREMENTS

Perturbation

Methoa

Requirements

Sun and Moon

Change i every
N days

2 sin:;l/

s( )—(2 3x10° )ﬂ"/M

AvNS(ﬂ) (46)

Sec

Svlar pressure

1 - Continuous thrust

2 - Circularize whenever
= g%

hY
_ {38Kkn / g
Avsz_( .1‘\ pr \

22 k‘!sinﬂ in'lﬁ)
2

3 - Change @ whenever
e=e*

4 -~ Change « slightly
whenever ¢ = e*

av,, (3Sk1r) o \1-2p)
2 sin ;ﬂ

oGk .,i,..'pl

Triaxiality

Change a whenaver
|ar,| = a1

AVt( LAWY 75sin 2y |




of ~rrors in north-south corrections. Misalinement of the north-south thrust vector may
cause an in-plane error. From reference 2, the AV per year to correct these in-plane
errors is of the order of three meters per second.

The station keeping methods and requirements discussed in this section are sun-
marized in tablr: II, The equations given in table II are available in curve form in the
report. Their use is best demonstrated by considering the sample problem given in
appendix ¥,

CONCLUDING REWNARKS

Station-keeping requirements have been determined for a class of high-power syn-
chronous equatorial communication satellites characterized by large Sun-tracking solar
arrays. The requirements for north-scuth control and for east-west control due to the
Earth's triaxiality are the same as for previous cemmunication satellites. However, be-
cause of the larger solar arrays, the effect of solar radiation pressure must also be con-
sidered for this new class of satellites. Solar radiation pressure produces an accelera-
tion proportional to the area-to-mass ratio of the sateliite, and the resultant accelera-
tions change the eccentricity of the satellite orbit. The eccentricily causes an apparent
daily east-west oscillation in the position of the satelliie. For high area-to-mass ratio
satellites, the east-west drift would be nearly i° longitude which would require station
keening for some missions.

Equations and curves are given based on the assumption that all station-keeping
corrections are carried out over a specified number of consecutive orbits with two

custing periods per orbit., For north-south corrections, the thrust is directed toward
the north in one thrusting period and directed toward the south in the other. Alterna-
tively, norcth-south corrections could be made with only one thrusting period per orbit,
the thrust always being in the same direction. The curves giving AV for north-south
corrections can be modified to handle the case of one thrusting period per orbit. The
AV curves for east-west corrections, however, 2—e usable only for the case of two !

thrusting periods 2r orbit.

This report covers the station keeping problem with emphasis on nonimpulsive
low-thrusct methods of station keerLing. Parametric equations and curves giving AV and
turuster acceleration requirements for the various methods of station keeping as a
function of duty cycle and frequency of correction are presented,

Lewis Research Certer,
National Aeronautics and Space Administration,
Cleveland, Ohio, July 14, 1970,
164-21.
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APPENDIX A

RADIO-FREQUENCY RADIATION PRESSURE

The momentum of a quantum of energy is given by

H-=

o]

- hy (A1)
c

where E is the energy of the quantum, C is the velocity of light, h is Planck's con-
stant and » is the frequency of radiation. If a plane source is emitting electromagnetic
radiation, the force F associated with the radiation is given by

in(ﬂ)=i<ﬁ)=ﬂ (A2)
dt dat\C/ C

where W is the total radiated power. The acceleration of a satellite due to radio-
frequency radiation pressure is given by

_W/m (A3)
C

g |

aApf

Based on a solar array packing density of 100 watts per square meter, a maximum area-
to-mass ratio of 0. 15 square meter per kilogram, and assuming that all of the collected
power is radiated as radio-frequency power, then the maximum power-to-mass ratio
W/m = 15 watts per kilogram. Henre,

(W/m)
(a ) =———max . 13walog - 5078 m/sec” (A4)
T8 max

c 3><108 m/sec

A focused beam of radio-frequency energy emanating from an equatcrial synchronous
satellite may be deliberately pointed off the local vertical by as much as 8. 7°. The re-
sultant acceleration vector Erf of such a beam may be resolved into in-plane and out-of-
plane components, The out-of-plane component, being nearly constant, will have a neg-
ligible effect on the orbit. The in-plane component of Erf may be further resolved into
radial and tangential components.

The radial component of Erf has the same kind of effect as the Earth's oblateness.
If an adjustment in the orbit radius is made, no station keeping is necessary., The ad-
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justment in radius for oblateness effects was 520 meters. For a radial component of
Erf equal to 5><1O'8 meter per second squared, the adjustment in radius for radio-

frequency effects is only 3 meters.

The effect of the tangential component of Erf is similar to that of triaxiality in that
a steady longitudinal drift of the satellite is produced. Let a; denote the tangential
rf
component of arf' The calculation of AV due to ay is the same as the calculation

rf
of AV due to triariality. It can be shown that the AV is proportioral to the magnitude
of the perturbing acceleration, The maximum value of a would occur if the satellite
rf

antenna is directed toviard the east or west horizon at the equator. For this case, the

~ maximum value of a is 7. 5><10'9 meter per second squared, The maximum tangen-

t
rf
tial acceleration due to triaxiality is seven times greater. The AV due to a is no
rf

more than one-seventh as much as the AV due to worst-case triaxiality. The total AV
per year due to radio-frequency effacts dces not exceed 0.3 meter per second.
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APPENDIX B

ANALYSIS OF e(t) AND w(t) WHEN 2, =0

In this appendix equations are derived for e(t) and w(t) when the initial orbit is
circular (e0 = 0). As mentioned previously, solar radiation pressure is the only pertur-
bation having an appreciable effect on e and w. From reference 6, the time rate of
change of e and w is given by

)
de _ _!C all- )@ - ) (B1)
dt 247

2
dw _ 1'{3&1_'2_) Sk(® - V) (B2)

dt 2\/Ee

For small e, the equations can be simplified to yield

de_-38k &. 1) (B3)
dt 2V

de_38k 3.7 (B4)
dt 2ve

To simplify the analysis, assume the orbit plane, equatorial plane, and ecliptic plane
are one and the same, Then, as shown in figure 29, the unit vectors U, F, Q lie in
this plane, Further, assume that the Sun is initially along the X-axis so that A = at.

Expanding the dot products in equations (B3) and (B4) gives

de _ 35K sin(w - At) (B5)
dt \
dw _ 35k oog(w - At) (B6)
dt 2ve

Figure 30 shows the proce. )y which solar pressure causes an initially circular orbit
to become eccentric, When the satellite is in the vicinity of the positive Y-axis, solar
pressure accelerates its motion and causes it to seek a higher altitude. When the satel-
lite is in the vicinity of the negative Y-axis, solar pressure decelerates the satellite's
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motion and causes it to seek a lower altitude. The result is a shi..ing of the orbit,
creating = perigee un the positive Y-axis and an apogee on the negative Y-axis. There-
fore, if e, is 0, then w o must be 7/%Z radians. The solution to equations (R5)

and (B6) with the initial conditions e 0= 0, W, = 7/2 is found by assuming a linear vari-
ation of w with time. The solution is

= 35K sin X t (B7)
Va 2
w=ﬁ+%, 0=<t=1year (B8)
2
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APPENDIX C

Rt IS S ALNT nme it hpe

ANALYSIS Or e(t) AND w(t) WHEN e, ¢ 0

In appendix B, analytic solutions for e(t) and w(t) were derived for the case e, = 0. !

Consider the initial conditions e, = % ep and w 0" 0. Using the same assumptions and

definitions as in appendix B, analytic solutions for e(t) and w(t) can be found, The

equations for e and w are i

e=3k Q.1 (C1) !
2V
£
o =235 5. 1) (C2)
2Ve

Assuming that the vectors U, P, and Q lie in the same plane allows equations (C1)
and (C2) to be written as

&= 135K gin(w - it) (C3)
v

w = +35Kk cos{w - it) (c4)
2Ve

The solution to equations (C3) and (C4) with the initial conditions e, = % e D and w 0= 0
is found by assuming a linear variation of w with time. The solution is

e:i&f:le (Cs)
2va 2 P
W= At (C6)

This solution for e{t) and w(t) corresponds to the Sun-oriented orbit. When e, has a
value other than 0 or -% e , equations (C3) and (C4) are not amenable to closed-form
soluticns, Computer solutions were obtained for e(t) and w(t) by numerically integrat-
ing equations (C1) and (C2). The assumption of the planar problem was not used when
obtaining computer solutions. In all cases, it was assumed that >‘o = 0 (starting at
autumnal equinox). For any values of € and Wy e(t) and w(t) were found to be peri-
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odic functions with period of 1 year. In all cases, the apsidzl line made either 0 or 1 net
revolution per year. Figure 31 presents a plot of e/k as a function of time for the ini-
tial conditions e, = 0.1 € and W, = 0. Notice that the minimum eccentricity is greater
than zero and the maximum eccentricity is less than e, For a given e o’ define two
functions of W, Let e max(wo) be the maximum value of eccentricity obtained when
(eo, wo) are the initial conditions, and let e minw 0) be the minimum value of eccen-
tricity when (eo, wo) are the initial conditions. For e, = 0.1 e_, figure 31 shows that

e min(0) = 0.002 k and e max(0) = 0.018 k. Figures 32 to 34 present e max(wo)/k and
e min(wo)/k for three different values of €y h; all cases, e max is smallest when

w, = 0. Of particular interest is the case € =3 ep (tig. 34). e max(0) and e min(0)
are nearly equal, implying that the eccentricity is nearly constant. The reason for this
is that the initial conditions e c=2¢€ o’ w, = 0 correspond to the Sun-oriented orbit,
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APPENDIX D

STATION-KEEPING TECHNIQUES FOR CHANGING ORBITAL
ECCENTRICITY AND ROTATING THE LINE OF APSIDES

Circularizing a Slightly Eccentric Orbit

in this appendix, il is assumed that all station-keeping corrections are completed
in a 24-hour period (M = 1). A slightly eccentric orbit can be circularized by radial
thrusting (thrusting in a direction collinear with the radius vector) or by tangential
thrusting (thrusting iu a direction collinear with the orbit velocity vector). Figure 35
presents a sketch of the radial thrusting maneuver when impulsive thrusting is used.
Position A1 corresponds to a true anomaly of 90°. This correction is made by first
thrusting inward (toward the Earth) in the vicinity of A1 and 1then thrusting outward in
the vicinity of A2. The transfer orbit has an eccentricity of 5 €. The AVc for impul-
sive thrusting is

AV, = eV (D1)
When nonimpulsive thrusting is used,
AV =evV T __ (D2)
¢ . pm
2 sin ~—
2

Let Yp be the value of y at the perigee of the orbit just prior to the circularization
maneuver. Then define A'yp by the equation

Ay, =y -Y (D3)
where 'yp is the mean longitude in the sense that the satellite longitude (before the
station-keeping correction) oscillates about y_ with an amplitude of 2e radians and a
period of 24 hours. Figure 36 presents a plot of Ay as a function of time when the
duty cycle of the station-keering correction iz 0.01, Notice that Ayp is zero after the
completion of the station-lLeeping maneuver,

Figure 37 prosents a sketch of the tangential thrusting maneuver when impulsive
thrusting is used. Position A1 is the orbit perigee for tangential thrusting. The cor-
rection is made by first thrusting westward in the vicinity of A1 and then thrusting
eastward in the vicinity of A,. The transfer orbit has eccentricity -21 e.
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The AV ¢ for impulsive thrusting is

av, =1ev (D4)
¢ 2
When nonimpulsive thrusting is used,
av =Llev BT __ (D5)
2 2 sin BX

which is one-half as much z:\Vc as required with the radial correction scheme,

Figure 38 presents a plot of Ay_ as a function of time when tangential thrusting is
used. Notice that a residual longitude error of 37¢/4 radians i< left after the comple-
tion of this station-keeping maneuver. It can be shown that an additional AV of approxi-
mately eV/4d is required tc remove the residual longitude error if d is the time in
days to make the correction.

Rotating Line of Apsides

Now consider radial and tangential thrust maneuvers which will rotate the line of
apsides of an orbit having a small eccentricity e. Let ¥ be the angle through which
the apSidal line is to be rotated, Figure 39 is a sketch of a radial correction maneuver
when impulsive thrusting is used. The correction is made by thrusting outward in the
vicinity of A1 and thrusting inward in the vicinity of A2. With radial thrusting, A1
corresponds to a true anomaly of-% Y in the final orbit. When impulsive thrusting is
used, AVc is given by

AV, = 2eV sin-gf (D6)

For nonimpulsive thrusting, AV c is given by

AV, = 26V sin y(_pr_ (D7)
2 gin BT
2




ot e o

Figure 40 presents a plot of Ay as a function of time when rotating the apsidal line
20° with radial thrusting, Notice that Ay is zero after the completion of the station-
keeping maneuver,. P

When rotating the line of apsides with tangential thrusting, A1 corresponds to a true
anomaly of % Y+ 90° in the final orbit. The correction is made by first thrusting west-
ward in the vicinity of A1 and then thrusting eastward in the vicinity of A2. Figure 41
is a sketch of this maneuver when impulsive thrusting is used.

When impulsive thrusting is used, AV c is given by

AV = eV sin ¥ (D8)
¢ 2

For nonimpulsive thrusting, AV c is given by

AV, = eV sin ¥[ BT __ (D9)

2 sin 27
2

Only half as much AV ¢ is required with tangential thrusting as with radial thrusting.
Figure 42 is a plot of Ay_ as a function of time when rotating the apsidal line 20° with

tangential thrusting. A residual longitude error of (3re/2) sin 5 radians is left after
the completion of the maneuver,
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APPENDIX E
DERIVATION OF FQUATIONS FOR AV; AND ag; FOR THE
FOUR METHODS OF CONTROLLING ECCENTRICITY

METHOD 1

Method 1 is to continuously cancel the effect of solar pressure by thrusting in a di-
rection toward the Sun. The acceleration level is given simply by

g1 = Sk (EY)
The AV per year is given by
AV _, = Sk(?ﬂ) (E2)
sl 3
It will be found convenient to express AVS1 as
2x /\3
METHOD 2

Method 2 is to circularize the orbit each time the eccentricity becomes equal to e*,
For this method, AV c (AV per correction) can be found by using equation (D5).

AV, = evy pr (E4)
2 2 sin 27
2

Recalling that e* = Bep and from equation (C5)

38k
e = e
P vi
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allows eguation (E4) to be writtea as

NS 3_815.@ LI
2A 2 sin BT

2

From appendix B equation (BT), the unkept eccentricity is

o sint
e‘epsmzt

The time t c between corrections can then be found froma the equation

A
ep;3 e ep sin 5 tc

Solving for tc yields

¢ = 2 sin'1g

¢ A

The number of corrections per year K is given by

Kzlzear=<_2_11> (Zsin'iﬁ __

AV, is then given by (K)(AVC).

AV, = <31r§k) prm B >
22 /\2 sin BT in'lﬁ
2
The acceleration level can be found from the equation

- 27pM
Avc - as2<—épE_"’>
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Solving for 259 yields

- /Sk\/ée,E> _E (E12)

METHOD 3

Method 3 is to rotate the line of apsides in such a manner that the solar pressure
will cause the eccentricity to decrease to zero before increasing again., Let 2t c be the
time between corrections. Using the same derivation as in method 2,

1

tc - 2 si.n B {E13)
A
AV, can be found by using equation (D9) to be
AV = (e*V sin i-“_‘"-) L (E14)
¢ 2 2 sin 27
sin &
\ 2
The values of w and X at time tc are
w=ﬁtc+£=sin_13 + 3 (E15)
2 2 2
A= At, = 2sin"lg (E16)
The angle Aw is then given by
Aw=2w=~A)=m~2 sin'lﬁ (E17)
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Now AVC 11ay be expressed as

AV = 35kB sin(E - sin‘lﬁ) P
¢ A 2 9 gin PF

Sin =—

It may be shown that

_1 \
sm(— - sin *B =

av, - 3Skl3
2 sin =~ pn

The number of corrections per year K is given by

Hence,

K = 1year _ T
2t

c 2 sin”

AV o is then given by (K)(AVC).

AV 3=(ﬁﬂ§k\ £ \é' 1o g
S 2’\/ 2sin%)\ sin-IB

The acceleration level can be found from the equation

AV = a (g..’LLM)
c 83 6
E
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Solving for agg gives

aq = <§£\ 39}3 B¥1- 3% (£23)
M/\ 4 sin 2 /
2

METHOD 4

Method 4 maintains the eccentricity nearly equal to e* by frequently rotating the
apsidal line in such a manner that w =~ A, To derive formulas for AVs4 and agy
return to the planar problem where it was assumed that the Earth, the Sun, and the sat-
ellite are in the same plane, Further assume that the Sun and the orbit perigee initially
are along the X-axis and that B < % Thus, A = At and W, = 0. In equations (B5)
and (B6), € and w are given by

& = 35K gin(w - ) (£24)
2V

W= 38k cos(w - At) ) (E25)
2Ve

With method 4, the apsidal line is rotated a small amount each time the eccentricity
becomes eq» to e*, This small rotation would cause the eccentricity to deccease only
slightly b+ increasing again., Eccentricity as a function of tirae for this method is
shown in figure 43. In this curve, 2tc i¢ the time between corrections, and ae* is the
minimum eccentricity. The time t c will be relatively small, and « will be only
slightly less than 1. Since e is kept nearly constant, then de/dt must be approxi-
mately zero. From equation (E24), it follows that w must be kept nearly equal to At.
Thus the apsidal line must be controlled so that perigee remains directed toward the
Sun., Assume now that at t= 0, e = @e*. From equation (E2E), for small t,

35k
2Ve o

W =

(E26)

By assumption e o <1} ep: Using the equation-% e b= 3Sk/2V), we obtain @ > A, The
apsidal line, if uncorrected, will rotate faster than the Sun. The control of the apsidal
line must then be as given in figure 43.
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The times of correction are tc’ 3tc . 5tc, . . .. With the assumption that tC is
small, AV requirements can be deterrained by linearizing and solving equations (E24)
and (E25) in the time it'erval 0 2t = tc. The initial conditions are W, = 0, Ay = 0, and

e = ae*, The linearized equations are

de _ 35k (4, - i) (E27)
at  2v
do_ 35 (F28)
dt 2Ve0

Equation (E28) can be {urther simplified by substituting for e:

e = 3Sk'aB (E29)
° W

U_ing the assumption that @ is approximately equal to 1, equation (E28) becomes

dw_ A (E30)
at 28
Solving for w,
w=2t (E31)
2B

Substituting this solution for w into equation (E27) gives

29=§_Sl‘&(_1_-1t (E32)
dt 2V \28
which can be integrated to give
e=e, +39KA (l- - 1>t2 (E33)
4V \28
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From equation (E33), tc is calculated to be

¢ =28 _[20- @ (E34)
C A ¥Y1-28
The rotation angle Aw of the apsidal line is
Aw =200t - 3t )= 2 (L22B). 2v/21 - @)1 - 28) (E35)
C C C 2B

Assuming Aw is small and « is approximately 1, AV ¢ can be found by using equa-
tion (D9)

AV = exV Aw( pm (E36)
2 9 gip 27
sin &~
av, = <3§kﬂ)(itc)(1 . 23) p7 (E37)
A 2p 2 sin p7
2
Rearranging terms,
25kt
AV = - 28R _ (E38)
¢ 2 . pw
2 gin &~
2

The number of corrections per year K is given by

K -lyear .7 (E39)
at, At

AVS4 is then given by (K)(AVC).
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A}

aVg,=3Skn( BT i - 2p)
2) 9 sin 7

The acceleration level ag, can be found from the equation

AV - a 2_”.21!1_
c s4 6
E

Solving for agy yields

. SSkeE(l - 2B)tc
s4 ~

8M sin 27
2

If corrections are made every N days, then

ot = 21N
¢

O
and

= kNG - 26)
]
8M sin!g-
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APPENDIX F

SAMPLE PROBLEM
INTRODUCTICN

To 2emonstrate the use of the curves in this report an exampl: of a typical high-
power communication satellite mission is presented. ne satellite parameters are

Mass, KZ . . . v v v it e e e e e e e e e e e e e e e e e e e e e e e 1000
Area-to-mass ratio, mz/kg e e e e e e e e e e e e e e e e e e e 0,154
Average reflectivity . . . ... ... e e e e e e e e e e e e . 0.3

The mission requirements are

Allowable longitudinal error, deg . . . . ¢ v ¢ c v 4t v e e b e et e e e e e e e 0.2
Longitude position, deg westlongitude . . . . . . ... .. .. ... ... .. 95
Mission life, yr (does not include 1 yrreserve) . ... .. ... A

Thruster systems available are

(1) Thrust, N . ........ e e e e e e e e e... 9.8
Specific impulse, Isp’ BEC & v v e .t e e e e e e e e e e e e e e e e e e e 10(3)

(2)Thrust, N . . . . i i v i s it i e e e e et ottt o e e e e e e 4,9x10”
Specific impulse, Isp‘ BBC & vt v et et e e e e e e e e e e e e e e 2000

The high-thrust system yields an accelerr.ation of 10'3 g on the satellite; the low-
thrust system yields an acceleration of 5X10” ' g on the satellite,.

NORTH-SOUTH STATION KEEPING
High-Thrust System

Figures 11 and 12 are used to determine AVNS‘ The fir-t step is to determine
from figure 12 the duty cycle p for given values of M, N, and aNg- Assume that
corrections are made once every 60 days (N = 60) and that the correction is carried out
in1day (M = 1). The ordinate M2yg of figure 12 is 10™ g, and the corresponding
abscissa p is approximately 0.01. So the correction is accomplished by thrusting in
the northerly direction for approximately 0,12 hour, and a half orbit later thrusting in
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the southeriy direction for approximately 0. 12 hour. Knowing p from figure 12, the
AV per year, AVyg, is then determined from figure 11 to be 46 meters per second.

Low-Thrust System

For the low-thrust case, assume first that corrections are made daily (M = 1,
N =1). The ordinate, MaNS’ of figure 12 is 5><10'7 g, and the corresponding abscissa p
is 0.3. From figure 11, AVns is 48 meters per second. If it is now assumed that cor-
rertions are made weekly (N = 7), the smallest possible value of the ordinate Mayg in
figure 12 is approximately 1. 5><10'6 g, corresponding to a unity duty cycle p. Since
aNg is 5x10” ' g, M must be 3 for this case. Thus the correction scheme consists of
continuous thrusting for 3 days and no thrusting for the next 4 days. Since the duty cycle
p is unity, the AV per year from figure 11 is 72 meters per second.

Figures 11 and 12 can be modified to handle the case of one thrusting period per
orbit instead of two. The modifications are:

(1) The thrusting time per orbit divided by the orbit period is 2p (instead of p).

(2) The number of days between the beginnings of successive inclination corrections
is N/2 (instead of N).

)

EAST-WEST STATION KEEPING DUE TO TRIAXIALITY

The AV required for triaxiality is a function only of Yor For a desired satellite
position of 95° west longitude, Yo = 105° - 95° = 10°. The AV per year is given in
figure 15 to be 0. 5 meters per second.

EAST-WEST STATION KEEPING DUE TO SOLAR PRESSURE
Method 1

For continuous thrusting against the Sun, the AV per year, Avsl’ is given by
equation (29) to be

3nSk /4
AV _, = === [~ F1
817 95 (3) (F1)

For this satellite, the AV per year is 28. 4 meters per second.
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Method 2

High-thrust system. - In determining AV reguirements ior the remaining station-
keeping methods, ALS and AI..t must first be chosen. Let ALS = 0.15% and
AL = 0.05°. The parameters k and B can be calculated from equations (4) and (32),
respectively,

)
k=(l+o)2 =020 (F2)
m kg
AL,
8=0.4—5-0.30 (F3)
K

To determine AVsZ’ refer to figures 17 and 18. The first step is to determine from
figure 18 the duty cycle p for given values of M and %. Assuming M = 1, the ordi-
nate (M/k) ago of figure 18 is 5><10'3 g's per square meter per kilogram. The corre-
sponding abscissa p, with the family parameter B = 0. 30, is seen to be much less than
0.01. Thus the orbit is circularized by two thrust pulses (12 hr apart) of duration muck
less than 0. 24 hour. Knowing p and B, figure 17 shows AVSZ/k is 104 (m/sec)/(mz/kg),
so that the AV per year, AV, is 20. 8 meters per second.

Low-thrust system. - From f{igure 18, with the family parameter 8 = 0. 30, the
smallest possible value of the ordinate (M/k)asz is approximately 2. 0><10'5 g's per
square meter per kilogram, corresponding to an abscissa p of 1.0. Since (l/k)as2 is
2. 5x10'6 g's per square meter per kilogram, M is 8 in this particular case. Thus, for
this low-thrust case, 8 days of continuous thrust is required to circularize the orbit.
From equation (E8), <orrections are made once every 35 days. For a unity duty cycle
and 6 = 0.30, figure 17 shows AV y/k is 162 (m/sec)/(m’/kg), so that the AV per
year, AVSZ, is 32. 4 meters per second.

Since AV, is largest when p= 1.0, it is desirable {o é:hoose asmaller p. If p
is chosen to be 0. 3, then from figure 18, (‘M/k)as2 is 3x10™° g's per square meter per
kilogram, implying that M is 12, For this case, the orbit is circularized by thrusting
7.2 hours per orbit for 12 consecutive orbits. From figure 17, the AV per year,
AV, is 21.2 meters per second, considerably less than the 32. 4 meters per second
for a unity duty cycle.
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Method 3

High-thrust system. - To determine AVS3, refer to figures 21 and 22. Assuming
M = 1, the ordinate (M/k)aS3 of figure 22 is 5><10-3 g's per sguare meter per kilogram,
The corresponding abscissa p, with the family parameter 8 = 0. 30, is seen to be less
than 0.01. Thus the apsidal line is rotated by two thrust pulses (12 hr apart) of duration
less than 0.24 hours. Knowing p and B, figure 21 shows AVS3/k is 100 (m/sec)/

(m /kg), so that the AV per year, AV 53’ is 20. 0 meters per second.

Low-thrust system. - If p is chosen to be 0. 4, then from figure 22 (M/k)a\S3 is
6x10~9° g's per square meter per kilogram, implying that M is 24. For this case, the
apsidal line is rotatel by thrusting 9.6 hours per orbit for 24 consecutive orbits. From
equation (E13), corrections are made once every 70 days. From figure 21, AVS3/kn is
105 (m/sec)/(m /kg so that the AV per year, AVS:.’,«'is 21. 0 meters per second,

Method 4

High-thrust system. - Unlike methods 2 and 3, the parameter N in method 4 is not
a function of B. The only restriction on N in method 4 is that it be small enough to
justify linearizing the differential equations for e and w., For the range of parameters
considered, the linearized equations can be justified for N = 30. To determine AVS 4
for the high-thrust case, refer to figures 24 and 25. Assuming N =30 and M =1, the
ordinate (M/k)aS 4 of figure 25(b) is 5x10” 3 g's per square meter per kilogram. The
corresponding abscissa 1, with the family parameter B = 0.30, is seen to be much less
than 0.01. Thus the apsidal line is rotated by two thrust pulses (12 hr apart) of duration
much less than 0.24 hour. Knowing p and B, figure 24 shows AV 4/k is 42 (m/sec)/
(m /kg), so that the AV per year, AV 4, is 8.4 meters per second.

Low-thrust system. - If N is now chosen to be 7, and a duty cycle p of 0.2 is
desired, then from figure 25(a), (M/‘k)as4 is approximately 5x10~6 g's per square
meter per kilogram, implying that M is 2. For this case, the apsidal line is rotatad
by thrusting 4. 8 hours per orbit for 2 consecutive orbits, From figure 24, AVs 4/k is
43 (m/sec)/(m /kg), so that the AV pex year, AV ,, is 8.6 meters per second.

SUMMARY OF REQUIREMENTS

Assuming the ratio of propellant mass to spacecraft mass is small, the propellant
mass as function of AV is given by
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=mAV
gl

m

] (F) :

sp
where m_ is the propellant mass, m is the spacec-att mass, and g is the accelera-

tion of gravity (9. 8 m/secz). Equation (F4) can be used to calculate the propeilant mass
once the AV is known,

g

@

-

T 273 T

Table III summarizes the station-keeping requirements.

TABLE III. - SAMPLE PROBLEM STATICN-KEEPING REQUIREMENTS FOR 5 + 1 YEAR MISSION

High thrust Low thrust
Propellant | Velocity Duty Time Propellant | Velocity Duty Time
mass, increment, | cycle,|{ between mass, increment, {cycle,| between
kg av, p [ corrections, kg av, p | corrections,
m/sec days m/sec days
North-south 282 276 0.01 <0 14.7 288 0. 30 1
Solar pressure 51 50 <0. 01 30 2.7 52 0.20 7
method 4
i -
Triaxiality 3 8 e mmeee- 0.2 3 ceve | eweaea
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Figure 1. - Thres typica! configurations of a higti-power communication satellite,
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Figure 2, -~ Satellite latitude as function of time, Perturbations, Sun and Moon,
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Figure 4. - Variation in saieliite longitude 1s function of time. Perturbation, triaxiality; desired sat-
ellite longitude measured from Earth's minor axis, 45°.
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Figure 5. - Inertial coordinate system,
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Wormalized eccentricity, elk, kglm2

Longitude of perig~2, « and longitude of Sun, A, deg
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Figure 6, - Normalized eccentricity as a function of time. Initial conditions: eccen-
tricity, Q
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Time, yr

Figure 7, - Longitude of perigee and longitude of Sun as functions of time, Initial
conditions: eccentricity, 0; longitude of Sun, Q




Normalized eccentricity, e/k, kg/mz

Longitude of perigee, « and longitude of Sun, A, deg
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Figure 8, - Normalized eccentricity as a function of time. Initial conditions: eccen-
tricity, 112 &y longitude of perigee, Q.

—
L Wz
7
A
Va
gy
L 1 I | 1
4 .8 L2 L6 2.0
Time, yr

Figure 9. - Longitude of perigee and longitude of Sun as functions of time, Initial
conditions: eccentricity, 172 epi longitude of perigee, C; longitude of Sun, 0.
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Figure 10. - Changing orbit inclination using two normal impulises.
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Normalized thruster acceleration for north-south station keeping, Mayg, ¢'s
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Figure 13. - Changing semimajor axis using two fangential imnulses.

Station keeping
— — ~ No station keeping

Aa

by '

+_
IE
<~

Figure 14, - Variaticn in semimajor axis as function of variation of satellite longitude. Perturbation, triaxiality,
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Narmalized eccentricity, e/ep.

Longitude of perigee, w, and fongitude of Sun, A, deg
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Figure 19. - Station-keeping parameters as functions of time when
station keeping Is not used. Eccentricity ratio, & 707, Initial con-
ditions: eccentricity, 0 longitude of Sun, Q
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Figure 24, - Normalized velocity increment per year for station keeping with method 4 :
as function of duty cycle with eccentricity ratio as a parameter,
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Figure 25, - Normalized thruster acceleration for siation keeping with method 4 as function of duty cycle with eccentricity ratio as a
parameter,
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Normalized velocity increments per year for methods 2,
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Figure 26. - Normalized velocity increments per year for methods 2, 3, and 4 as func~
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Figure 27, - Variation In satellite fongitude as function of time when
station-keeping method 2 with radial thrusting is used,
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Figure 28, - Variation in sateltite longitude as function of time when
station-keeping method 2 with tangential thrusting is used,
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Figure 29, - Inertial coordinate system for planar problem,
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Figure 30, - Change in eccentricity when initial orbit is circular,
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Figure 3L, - Normalized eccentricity as function of time. initial conditions: eccen-
tricity, @ 1 o longitude of perigee, 0; longitude of Sun, Q
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Figure 33, - Maximum and minimum normalized eccentricity as function of initial perigee
longitude, Initial conditions: eccentricity, QSep; longitude of Sun, 0
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Figure 34, - Maximum and minimum normalized eccentricity as function of initial perigee

longitude, Initial conditions: eccentricity, O.Sep; longitude of Sun, Q
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Variation in satellite longitude, Ayp, rad
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Figure 36, - Variation in satellite lonqitude as function of time when circularizing orbit with radial
thrust. Eccemricity of original orbit is e.
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Figure 37, - Circularizing the orbit using two tangential impulses.
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Variation in satellite longitude, Ayp, rad
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Figure 38, - Variation in satellite longitide as function of time when circularizing orbit with tangential
thrust Eccentricity of original orbit is e,
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variation in sateliite longitude, Arp, rad
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Figure 39, - Rotating the 2psidal line through an angle ¢ using two radial impuises,
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Figurs 40 - Varlation in satsliite longitude as function of time when rotating apsidal line through 20°

using radial thrust. Eccentricity Is e
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Variation in <ateltite loncitude, Axp, rad
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Figure 41. - Rotating the apsidal iine through an angle ¢ using two tangential im-
pulses,

3e—

First

% impulse

wm

4 lesin10°

!

(=4

¢

Second
impulse

| I | |

0 .5 Lo L5 20 25
Time, days

3.0

Figure 42, - Variation in satellite longfrude as function of time when rotating apsidal line through 20°

using {angential thrust. Eccentricity is e.
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Figure 43, - Station-keeping parameters as functions of time when method 4 is used,
Initial conditions: eccentricily, =e*; longitude of perigee, J; tongitude of Sun, G
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